[ad_1]

  • 1.

    Gatesy, S. M. & Middleton, K. M. in Fins Into Limbs: Evolution, Development, and Transformation (ed. Hall, B. K.) 269–283 (Univ. Chicago Press, Chicago, 2007).

  • 2.

    Norberg, U. Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution (Springer, Berlin, 1990).

  • 3.

    Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

  • 4.

    Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebr. Paleontol. 17, 308–329 (1997).

  • 5.

    Chatterjee, S. & Templin, R. J. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui. Proc. Natl Acad. Sci. USA 104, 1576–1580 (2007).

  • 6.

    Xu, X. et al. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521, 70–73 (2015).

  • 7.

    Padian, K. Dinosaur up in the air. Nature 521, 40–41 (2015).

  • 8.

    Liu, Y., Liu, Y., Ji, S. A. & Yang, Z. U–Pb zircon age for the Daohugou Biota at Ningcheng of Inner Mongolia and comments on related issues. Chin. Sci. Bull. 51, 2634–2644 (2006).

  • 9.

    Huang, D. Yanliao biota and Yanshan movement (in Chinese). Acta Palaeontologica Sin. 54, 501–546 (2015).

  • 10.

    Campione, N. E., Evans, D. C., Brown, C. M. & Carrano, M. T. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods Ecol. Evol. 5, 913–923 (2014).

  • 11.

    Persons, W. S., Currie, P. J. & Norell, M. A. Oviraptorosaur tail forms and functions. Acta Palaeontol. Pol. 59, 553–567 (2013).

  • 12.

    O’Connor, J. K. & Sullivan, C. Reinterpretation of the Early Cretaceous maniraptoran (Dinosauria: Theropoda) Zhongornis haoae as a scansoriopterygid-like non-avian, and morphological resemblances between scansoriopterygids and basal oviraptorosaurs. Vertebr. Palasiat. 52, 3–30 (2014).

  • 13.

    Gatesy, S. M. & Thomason, J. in Functional Morphology in Vertebrate Paleontology (ed. Thomason, J. J.) 219–234 (Cambridge Univ. Press, Cambridge, 1995).

  • 14.

    Zhang, F., Zhou, Z., Xu, X., Wang, X. & Sullivan, C. A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455, 1105–1108 (2008).

  • 15.

    Zhang, F., Zhou, Z., Xu, X. & Wang, X. A juvenile coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89, 394–398 (2002).

  • 16.

    Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Mus. Nat. Hist. 371, 1–206 (2012).

  • 17.

    Xu, X. et al. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. Chin. Sci. Bull. 54, 430–435 (2009).

  • 18.

    Balanoff, A. M. & Norell, M. A. Osteology of Khaan mckennai (Oviraptorosauria: Theropoda). Bull. Am. Mus. Nat. Hist. 372, 1–77 (2012).

  • 19.

    Hutchinson, J. R. The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zool. J. Linn. Soc. 131, 123–168 (2001).

  • 20.

    Zhang, F. et al. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463, 1075–1078 (2010).

  • 21.

    Thorington, J. R. W., Darrow, K. & Anderson, C. G. Wing tip anatomy and aerodynamics in flying squirrels. J. Mamm. 79, 245–250 (1998).

  • 22.

    Oshida, T., Hiraga, H., Nojima, T. & Yoshida, M. C. Anatomical and histological notes on the origin of the long accessory styliform cartilage of the Russian flying squirrel, Pteromys volans orii. Mammal Study 25, 41–48 (2000).

  • 23.

    Dial, K. P. Wing-assisted incline running and the evolution of flight. Science 299, 402–404 (2003).

  • 24.

    Lovette, I. J. & Fitzpatrick, J. W. Handbook of Bird Biology 3rd edn (John Wiley & Sons, Hoboken, 2016).

  • 25.

    Sullivan, C. et al. The vertebrates of the Jurassic Daohugou biota of northeastern China. J. Vertebr. Paleontol. 34, 243–280 (2014).

  • 26.

    Liu, Y., Liu, Y. & Zhang, H. LA-ICPMS zircon U-Pb dating in the Jurassic Daohugou beds and correlative strata in Ningcheng of Inner Mongolia. Acta Geol. Sin. 80, 733–742 (2006).

  • 27.

    Liu, Y.-Q. et al. Timing of the earliest known feathered dinosaurs and transitional pterosaurs older than the Jehol biota. Palaeogeogr. Palaeoclimatol. Palaeoecol. 323–325, 1–12 (2012).

  • 28.

    Chu, Z. et al. High-precision U-Pb geochronology of the Jurassic Yanliao biota from Jianchang (western Liaoning Province, China): age constraints on the rise of feathered dinosaurs and eutherian mammals. Geochem. Geophys. Geosyst. 17, 3983–3992 (2016).

  • 29.

    Xu, X., Zhou, Z., Sullivan, C., Wang, Y. & Ren, D. An updated review of the Middle–Late Jurassic Yanliao Biota: chronology, taphonomy, paleontology and paleoecology. Acta Geol. Sin. 90, 2229–2243 (2016).

  • 30.

    Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).

  • 31.

    Christiansen, P. & Fariña, R. A. Mass prediction in theropod dinosaurs. Hist. Biol. 16, 85–92 (2004).

  • 32.

    Serrano, F. J., Palmqvist, P. & Sanz, J. L. Multivariate analysis of neognath skeletal measurements: implications for body mass estimation in Mesozoic birds. Zool. J. Linn. Soc. 173, 929–955 (2015).

  • 33.

    Campione, N. E. & Evans, D. C. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 10, 60 (2012).

  • 34.

    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

  • 35.

    Brusatte, S. L. in Computational Paleontology (ed. Elewa, A. M. T.) 53–74 (Springer, Heidelberg, 2011).

  • 36.

    Laurin, M. The evolution of body size, Cope’s rule and the origin of amniotes. Syst. Biol. 53, 594–622 (2004).

  • 37.

    Wang, M. & Lloyd, G. T. Rates of morphological evolution are heterogeneous in Early Cretaceous birds. Proc. R. Soc. Lond. B 283, 20160214 (2016).

  • 38.

    Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

  • 39.

    Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).

  • 40.

    Benson, R. B. J. & Choiniere, J. N. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. Lond. B 280, 20131780 (2013).

  • 41.

    Hu, D. et al. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Commun. 9, 217 (2018).

  • 42.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 20, 289–290 (2004).

  • 43.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

  • 44.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

  • Let’s block ads! (Why?)

    [ad_2]

    Source by [author_name]